2025/12/29 []
職業傷病的通報與監測:丹麥經驗對我國制度改革的啟發
良好的通報制度是職業健康政策的基礎,但各國普遍存在低報問題,尤其是非致死職災及慢性職業病。本文探討我國職業傷病通報制度的現況、挑戰,並借鏡丹麥經驗提出改革建議。
我國現行職業傷病通報機制包含五大類。然而,這些制度長期存在紛亂、低報等問題,且通報後往往未能有效連結至個案管理或職場環境改善。相較之下,丹麥制度以法律強制力為核心,要求雇主與醫師只要合理懷疑傷病與工作相關即可通報,無須負擔實質因果判定責任。此機制成功區隔醫師的照護角色與保險人的調查責任,並將通報數據整合至「工作環境管理局」(DWEA),引導以風險為導向的勞動檢查。
依據現況回顧與國際制度比較,本文提出七個建議,包含:強化雇主職災通報責任並提高罰鍰;賦予醫事人員法定義務,通報疑似個案至勞工主管機關;建立疑似個案偵測及通報流程;降低醫事人員角色衝突,由勞動主管機關承擔後續調查與認定責任;提供醫療機構通報之合理經濟誘因;檢視績效指標的目的與效果;整合職災個案通報平台等。
-
預定刊載卷期:台灣衛誌 2025;44(6)
-
公衛論壇 Public Health Forum
-
-
Chung-Yen Chen, Ming-Wei Lin, Yawen Cheng
-
職業傷病通報與監測、丹麥經驗、法定義務、低報
Reporting and Surveillance of Occupational Injuries and Diseases, Danish Experience, Mandatory Reporting, Underreporting
-
人工智慧與機器學習(Artificial Intelligence/Machine Learning, AI/ML)相關技術日益精進,對公共衛生教育帶來前所未有的挑戰與契機。我國全民健康保險制度與整體醫療照護體系素以完善聞名,為公共衛生實踐奠定堅實基礎,憑藉數位建設與制度的優勢,AI/ML具備推動教育轉型與創新的潛力。然而,當前AI技術在公衛教育中的發展仍屬零星,缺乏統整性與系統架構。本文綜整多位公共衛生領域中熟稔AI/ML教師的觀點,探討相關科技納入臺灣公衛教育之課程設計建議方向、核心能力目標、具體教學策略及可能面臨的制度風險。最後,本文將提出具體的實務建議與未來發展方向,期望為政策規範與教育實踐提供系統性的參考依據。
-
Artificial Intelligence and Machine Learning (AI/ML) technologies are advancing rapidly, bringing unprecedented challenges and opportunities to public health education. Taiwan’s National Health Insurance system and integrated care network provide a strong foundation for public health practice; leveraging this digital infrastructure and institutional maturity, AI/ML holds great promise for driving educational transformation and innovation. Yet AI integration in public health education remains fragmented and lacks a coherent framework. This study synthesizes the perspectives of experienced AI/ML public health educators to offer recommendations on curriculum design, core competency targets, concrete teaching strategies, and potential institutional risks. Finally, it presents practical suggestions and future development pathways to inform policy and educational practice.
-
534-542
-
http://bit.ly/3r4HS9R